Поиск :
Личный кабинет :
Электронный каталог: Вычислительные методы в современной радиофизике
Вычислительные методы в современной радиофизике
Нет экз.
Электронный ресурс
Автор:
Вычислительные методы в современной радиофизике : монография
Издательство: ФИЗМАТЛИТ, 2009 г.
ISBN 978-5-9221-1099-0
Автор:
Вычислительные методы в современной радиофизике : монография
Издательство: ФИЗМАТЛИТ, 2009 г.
ISBN 978-5-9221-1099-0
Электронный ресурс
Вычислительные методы в современной радиофизике : монография. – Москва : ФИЗМАТЛИТ, 2009. – 468 с. – URL: https://biblioclub.ru/index.php?page=book&id=75575. – Режим доступа: электронная библиотечная система «Университетская библиотека ONLINE», требуется авторизация . – На рус. яз. – ISBN 978-5-9221-1099-0.
В монографии изложены основные идеи и методы, связанные с разработкой численных моделей в краевых задачах электродинамики СВЧ-диапазона, а также цифровой обработки сигналов и изображений. Она состоит из четырех глав. В первой и второй главах получены решения различных видов частотно-пространственных интегральных уравнений (ИУ) для планарных, квазипланарных структур, исследована дифракция электромагнитных импульсов на двух- и трехмерных металлических и диэлектрических телах, на щелях и отверстиях в идеально проводящем экране. В третьей главе представлены и обоснованы алгоритмы построения нового класса ортогональных вейвлетов Кравченко на основе атомарных функций (АФ) и новый метод численного дифференцирования, основанный на использовании WA-систем функций. В четвертой главе описаны конструкции ортогональных вейвлетов на основе АФ ha(x). Показаны преимущества нового класса аналитических вейвлетов Кравченко-Рвачева (АКР-вейвлетов) перед вейвлетами Добеши, Морле, Шеннона и других для анализа сверхширокополосных (СШП) сигналов. Представлен новый подход, основанный на комбинациях АФ в сочетании с классическими спектральными ядрами. Показано, что эти конструкции спектральных ядер, используемые при передаче и приеме информации, имеют преимущества перед уже известными в задачах спектрального анализа СШП сигналов.Для научных работников, аспирантов и студентов старших курсов радиофизических и радиотехнических специальностей, работающих в области вычислительной математики и физики.
538.56:518.5:621.37
517.95:621.391.24:531
Вычислительные методы в современной радиофизике : монография. – Москва : ФИЗМАТЛИТ, 2009. – 468 с. – URL: https://biblioclub.ru/index.php?page=book&id=75575. – Режим доступа: электронная библиотечная система «Университетская библиотека ONLINE», требуется авторизация . – На рус. яз. – ISBN 978-5-9221-1099-0.
В монографии изложены основные идеи и методы, связанные с разработкой численных моделей в краевых задачах электродинамики СВЧ-диапазона, а также цифровой обработки сигналов и изображений. Она состоит из четырех глав. В первой и второй главах получены решения различных видов частотно-пространственных интегральных уравнений (ИУ) для планарных, квазипланарных структур, исследована дифракция электромагнитных импульсов на двух- и трехмерных металлических и диэлектрических телах, на щелях и отверстиях в идеально проводящем экране. В третьей главе представлены и обоснованы алгоритмы построения нового класса ортогональных вейвлетов Кравченко на основе атомарных функций (АФ) и новый метод численного дифференцирования, основанный на использовании WA-систем функций. В четвертой главе описаны конструкции ортогональных вейвлетов на основе АФ ha(x). Показаны преимущества нового класса аналитических вейвлетов Кравченко-Рвачева (АКР-вейвлетов) перед вейвлетами Добеши, Морле, Шеннона и других для анализа сверхширокополосных (СШП) сигналов. Представлен новый подход, основанный на комбинациях АФ в сочетании с классическими спектральными ядрами. Показано, что эти конструкции спектральных ядер, используемые при передаче и приеме информации, имеют преимущества перед уже известными в задачах спектрального анализа СШП сигналов.Для научных работников, аспирантов и студентов старших курсов радиофизических и радиотехнических специальностей, работающих в области вычислительной математики и физики.
538.56:518.5:621.37
517.95:621.391.24:531