Этот сайт поддерживает версию для незрячих и слабовидящих

36

Что исследования работы мозга позволили узнать о восприятии лица человека и его экспрессий?

Королькова О. А.,
кандидат психологических наук, старший научный сотрудник, Центр экспериментальной психологии, ФГБОУ ВО МГППУ; преподаватель, кафедра общей психологии, Московский институт психоанализа, Москва, Россия,
olga.kurakova@gmail.com

Представления о механизмах восприятия лица человека могут быть существенно дополнены рядом новых данных, полученных с помощью современных методов функционального картирования мозга. В обзоре приводятся результаты исследований, позволяющих уточнить функционирование распределенной мозговой системы, связанной с восприятием лица. Рассматривается проблема того, как соотносятся узнавание человека по лицу и определение его экспрессии. Анализируются механизмы восприятия статических и динамических лиц, а также лица в контексте действия. Подчеркивается необходимость усиления экологической валидности нейрокогнитивных исследований восприятия лица.

Ключевые слова: фМРТ, восприятие лица, экспрессии лица, динамическая экспрессия, лицо в контексте, FFA, STS, OFA, распределенная система лиц.

Для цитаты:

Королькова О. А. Что исследования работы мозга позволили узнать о восприятии лица человека и его экспрессий? [Электронный ресурс] // Современная зарубежная психология. 2016. Т. 5. № 4. С. 36—49. doi:10.17759/jmfp.2016050404

For citation:

Korolkova O. A. What functional brain studies have revealed about face and facial expression perception? [Elektronnyi resurs]. Journal of Modern Foreign Psychology, 2016. Vol. 5, no. 4, pp. 36—49. doi: 10.17759/jmfp.2016050404 (In Russ., Abstr. in Engl.).

Введение

В 1986 г. В. Брюс и Э. Янг предложили функциональную модель восприятия лица человека, включающую ряд обособленных блоков, которые обеспечивают переработку различных типов информации: структурное кодирование изображений лица; узнавание человека по его лицу; распознавание речевой и эмоциональной экспрессии; извлечение из памяти сведений о знакомых людях и др. [12]. Последовавшие за этим интенсивные нейрокогнитивные исследования позволили соотнести отдельные компоненты данной модели со специфическими паттернами мозговой активации. На основании результатов, полученных к 2000 г., Дж. Хаксби и др. описали распределенную систему мозга, состоящую из базовой части — областей, в которых происходит анализ зрительной информации о лице и его экспрессиях, и расширенной части — областей, связанных с дальнейшей когнитивной переработкой: извлечением семантической информации о знакомых людях, их личностных чертах и отношении к ним; оценкой выраженной на лице эмоции; восприятием направления взора [33]. Благодаря своему обобщающему характеру, модели Брюс—Янга и Хаксби и др. стали классическими в когнитивной психологии и, с учетом более поздних дополнений, составляют сегодня один из основных подходов к восприятию лица [34; 39]. Однако со времени публикации этих моделей появился ряд новых данных, которые могут уточнить имеющиеся представления о мозговых механизмах восприятия лица. Предлагаемый обзор включает как краткое описание основных результатов ранних исследований, так и некоторые новые результаты, полученные за последние годы. Акцент сделан на следующих вопросах.

• Как соотносятся узнавание знакомого лица и восприятие его экспрессии?

• Отличается ли восприятие лица в статике и динамике?

• Как воспринимается лицо в контексте действия?

Первая из этих тем поднималась еще Брюс и Янгом 30 лет назад; вторая и третья начали интенсивно исследоваться с помощью нейроимиджинговых методов относительно недавно, и их рассмотрение существенно дополняет классическую модель, опирающуюся прежде всего на данные о восприятии статичных изображений изолированного лица.

Узнавание лица и восприятие экспрессий: независимая переработка или взаимодействие?

Классическая модель предполагает существование двух относительно независимых механизмов: 1) узнавания знакомых лиц, инвариантного относительно изменения выражения лица, направления взора или угла поворота головы; 2) определения экспрессий (эмоциональных и речевых), инвариантного относительно знакомости лица [12; 33; 35]. Первый процесс преимущественно связывается с активацией так называемой

37

зоны лиц в нижней затылочной извилине — OFA1 и зоны лиц в веретеновидной извилине — FFA; второй — с активацией области в задней части верхней височной извилины и борозды — pSTS (рис. 1). Однако более новые данные — как психофизические, так и нейрофизиологические — ставят под сомнение полную независимость этих двух процессов [13]. Рассмотрим некоторые аргументы, которые свидетельствуют как за, так и против гипотезы независимости.

Рис. 1. Области мозга, демонстрирующие избирательную активацию при восприятии изображений лица, представлены на срезах в трех проекциях и в трехмерной реконструкции.

Активация получена по результатам метаанализа 720 исследований, отобранных из базы Neurosynth [41] по ключевому слову «face» (http://neurosynth.org/analyses/terms/face/). Отмечены зоны, входящие в ядро распределенной системы: OFA — зона лиц в нижней затылочной извилине; FFA — зона лиц в верете-новидной извилине; pSTS — область в задней части верхней височной извилины и борозды; а также AMY — миндалина, которая входит в расширенную систему и вовлекается в анализ аффективной информации. Координаты срезов соответствуют системе Монреальского неврологического института

Первый источник данных относительно соотношения двух механизмов составляют случаи нарушений восприятия лица вследствие травм, нейрохирургического вмешательства или врожденных аномалий. Ряд ранних нейропсихологических исследований выявил двойную диссоциацию между узнаванием лица и определением его выражения. В частности, при приобретенной прозопагнозии, развивающейся в результате повреждений в затылочно-височных отделах мозга, нарушается узнавание знакомых лиц, хотя распознавание экспрессии может сохраняться [1; 70]. У других пациентов наблюдается противоположная картина: нарушается распознавание экспрессии, но не узнавание человека по его лицу [27; 36]. Метаанализ 100 случаев приобретенной прозопагнозии, описанных начиная с 1974 г., показал, что подобные нарушения преимущественно связаны с повреждениями в области OFA и реже — в FFA либо STS [11]. Первые исследования прозопагнозии неоднократно подвергались критике с точки зрения используемых методов [13], однако с учетом этой критики за последние годы описано еще несколько случаев, подтверждающих гипотезу независимых механизмов [5; 28; 50]. Они связаны в основном с повреждениями нижней, средней либо передней височной коры или нижней затылочной извилины преимущественно в правом полушарии [6], что также соответствует анатомической модели Хаксби и др., в которой этим зонам отводится ключевая роль в переработке инвариантных характеристик лица. У пациентов с прозопагнозией, имеющих повреждения в OFA, активация в FFA при восприятии лиц была сохранна [56; 66], хотя последняя область при этом не демонстрировала эффекта адаптации — характерного для нормы снижения активации при повторном предъявлении лица одного и того же человека [2]. Это свидетельствует о необходимости нормального функционирования области OFA для эффективного распознавания лица. Нарушения восприятия экспрессий при сохранной способности узнавания лиц наблюдаются преимущественно при повреждениях задней части верхней височной борозды (pSTS) и миндалины [23; 50]. При этом у одного из пациентов с повреждением pSTS были нарушены как распознавание экспрессий, так и узнавание людей с различными экспрессиями, что говорит о возможном взаимодействии двух подсистем [50]. Однако такой поведенческий эффект может быть связан не только с системой переработки информации о лице, но и с иной системой, обеспечивающей восприятие и переживание эмоций [13], поэтому он не может однозначно трактоваться как доказательство взаимодействия механизмов. В отличие от приобретенных нарушений, врожденная прозопагнозия характеризуется избирательной неспособностью узнавания лиц [19; 37] или экспрессий [53; 25], возникшей в результате атипичного развития мозга, и обычно не сопровождается другими когнитивными нарушениями [14; 18]. Предположительно, такие пациенты могут использовать особые стратегии, позволяющие им в ряде случаев выполнять задания на распознавание и запоминание экспрессий на уровне нормы [7; 37], поэтому для уточнения особенностей функционирования именно перцептивных механизмов могут потребоваться дальнейшие исследования.

Помимо изучения клинических случаев прозопагнозии, в последнее время широко используется так

38

называемый метод «виртуального пациента», позволяющий с помощью транскраниальной магнитной стимуляции (ТМС) временно инактивировать определенный участок коры мозга у здорового человека и тем самым смоделировать его избирательное повреждение [52; 68]. Методические ограничения ТМС не позволяют воздействовать на зоны, расположенные глубже чем 2—3 см от поверхности коры (в их числе FFA и передняя височная кора), однако направленное воздействие на STS или OFA возможно. Поскольку предполагается, что последняя посылает сигнал в вышележащие области, с помощью данного метода можно исследовать функциональную организацию распределенной системы и эффективность восприятия различных аспектов лица. Показано, что ТМС-инактивация области OFA избирательно нарушает распознавание изображений лиц, но не изображений неживых объектов или тела человека [73], причем это нарушение связано с восприятием изменения отдельных частей лица, но не расстояний между ними [68]. По сравнению с контрольным условием, после воздействия на правую OFA активация в FFA (билатерально) на последовательно экспонируемые лица различных натурщиков уменьшалась [63], как если бы происходила потеря информации о том, кому принадлежит данное лицо. Однако в отличие от данных, полученных на пациентке с прозопагнозией, которая имела повреждения правой нижней височной извилины и левой веретеновидной извилины [38], активация FFA на разные лица все равно была значимо выше, чем на одинаковые, что предполагает лишь частичное нарушение ее функций вследствие воздействия на OFA. При этом такое воздействие полностью разрушает вклад STS в различение лиц, поскольку активация на разные лица в этой области снижается до уровня активации на повторяющееся лицо. В самой OFA при этом уменьшался эффект адаптации только к экспозиции одинаковых лиц. Что касается pSTS, ее инактивация с помощью ТМС приводила к снижению перцептивного доминирования эмоциональных лиц в условиях бинокулярного соревнования, но не влияла на доминирование нейтральных лиц [75], что говорит скорее в пользу различных механизмов их переработки. В других исследованиях, однако, воздействие на STS нарушало восприятие направления взора, но не восприятие экспрессии, на которое влияли только воздействия на область в соматосенсорной коре либо в OFA [71; 17]. Последнее может быть связано с селективностью OFA к структурным изменениям частей лица, которые происходят в том числе при изменении экспрессии.

Второй источник данных о независимости либо взаимодействии механизмов переработки двух типов информации — результаты, полученные с помощью метода фМРТ-адаптации. Он основан на том, что по сравнению с экспозицией различающихся стимулов последовательная экспозиция стимулов с одинаковыми характеристиками приводит к снижению активации в зонах, чувствительных к данной характеристике — например, к экспрессии или к личности изображенного человека. При этом одновременные изменения нерелевантной характеристики не меняют активацию данной зоны. Одно из первых исследований продемонстрировало значимую адаптацию к экспрессии в средней части правой STS (mSTS), расположенной кпереди от выделяемой обычно зоны лиц, и на уровне тенденции — адаптацию в правой pSTS; при этом адаптация к личности натурщика наблюдалась в правых pSTS и FFA [29], тем самым подтверждая гипотезу о разделении функций, хотя по несколько иному анатомическому принципу, чем предполагалось в модели Хаксби и др. Другие исследования также хорошо согласуются с этой моделью, выявляя адаптацию к структурным изменениям лица в области OFA и ряде областей в лобной коре [65; 45], а адаптацию к личности — в FFA (билатерально, но преимущественно справа), в нижнелобной коре, в передней части STS (справа), но не в ее задней части [4; 43; 45]. В области FFA и в миндалине при этом наблюдаются признаки категориального восприятия, поскольку активация при последовательном предъявлении изображений из разных перцептивных категорий выше, чем при демонстрации изображений из одной категории с такими же физическими различиями [65; 32; 45]. Субъективная степень знакомости лица положительно коррелирует с величиной эффекта фМРТ-адаптации в более передних областях (полюс левой височной доли и правый гиппокамп), которые, вероятно, участвуют в извлечении из памяти семантической информации об известных личностях. Впоследствии адаптация к экс-прессиям различных модальностей была продемонстрирована как в STS, так и в FFA [65; 69; 79], что говорит о включении обеих областей в анализ изменчивых характеристик лица [13]. Чувствительность различных зон к изменениям экспрессии не обязательно означает, что их функции идентичны. Так, FFA и pSTS могут извлекать из изображений экспрессивных лиц информацию различного рода: о типичности конкретного лица по сравнению с усредненным лицом (FFA) и о его эмоциональной валентности (pSTS) [57]. Речь также может идти о взаимной модуляции STS и FFA, при которой их избирательное включение в переработку информации о лице или его экспрессии может дополняться функциональным взаимодействием, обеспечивающим более эффективное распознавание отдельных аспектов лица [65]. В обеих областях при этом отмечаются нисходящие влияния задачи или субъективной категоризации. Так, внимание к определенному аспекту лица, которое обеспечивается заданием на распознавание лица или экспрессии, опосредует связь между их обработкой и приводит, в частности, к тому, что активация FFA может быть выше при оценке экспрессий, чем при распознавании лиц [67]. В задаче идентификации изображенного человека (одинаковые либо разные натурщики последовательно предъявлялись в каждой пробе) в FFA наблюдается снижение эффекта адаптации не только при изменении личности, но и при изменении экспрессии, выраженной на лице, хотя во втором

39

случае активация повышается не столь существенно [79]. В зонах OFA и pSTS при этом изменений не происходит [35]. В другом исследовании в задаче, предполагающей внимание к личности натурщика, адаптация к экспрессии, согласованная с ее перцептивной категоризацией, наблюдалась в FFA и mSTS, а адаптация к личности — в FFA и предклинье. Если же задача предполагала внимание к экспрессии, в обоих случаях (изменений как личности, так и экспрессии) помимо адаптации в этих областях выявлена адаптация в pSTS [65]. Адаптация в области OFA, как и в других проведенных исследованиях, не зависела от задачи или субъективного восприятия натурщиков и экспрессий, но была связана только со структурными изменениями лица.

Наконец, третьим источником сведений о соотношении узнавания лиц и экспрессий стали исследования восприятия лица в динамике, которые активно проводятся в последние годы [20]. Вопреки предположениям классической модели, было показано, что динамическая информация может облегчать распознавание как лиц, так и экспрессий [40], в том числе и пациентами с прозопагнозией [46; 42; 54]. Уточненная модель восприятия лица, предложенная Э. О’Тул и коллегами, предполагает, что роль pSTS не сводится к анализу динамической информации об экспрессии, направлении взора и движениях губ при речи, но распространяется также на узнавание знакомых лиц по их характерным движениям [48]. FFA, в свою очередь, вовлекается в анализ экспрессий лица и так же, как и pSTS, демонстрирует более высокую активацию на эмоциональные, чем на нейтральные лица [69]. Два пути анализа различных характеристик лица — его формы и движения — могут взаимодействовать как при выделении структурной информации, способствующей идентификации человека по его движущемуся лицу, так и при выделении информации о произошедших изменениях в лице по его статическим изображениям [8]. Недавнее ТМС-исследование показало, что кратковременное «выключение» OFA снижало ответ как на статические, так и на динамические лица в FFA, тогда как в STS снижался ответ только на статические лица, но не на динамические, что предполагает наличие дополнительных связей с другими областями (в частности, прямые связи STS с прилежащей к ней зоной V5/MT) и еще более раннее разделение путей анализа статической и динамической информации о лице [51]. ТМС-инактивация области STS при этом избирательно снижала активацию на динамические, но не на статические лица, подчеркивая ее роль в анализе изменчивых компонентов лица. Эти данные, как и ряд других, предполагают, что два пути переработки информации о лице — вентральный путь анализа структуры лица и латеральный путь анализа его динамики — имеют более высокоуровневые взаимосвязи, чем постулировалось в модели Хаксби и др., либо существует отдельный путь, напрямую соединяющий области в первичной зрительной коре и верхнюю височную извилину [51]. Предположительно, движение лица, воспринимаемого в реальной ситуации социального взаимодействия, будет одновременно активировать оба механизма [40].

Рассмотренная совокупность данных о нарушениях восприятия лица и экспрессий свидетельствует скорее в пользу достаточно раннего разделения двух путей переработки информации, оставляя, однако, возможность их последующего взаимодействия. Поскольку повреждения OFA существенно затрудняют распознавание лиц, но значительно меньше влияют на распознавание экспрессий, можно говорить о частичной диссоциации двух механизмов. Вместе с тем, и FFA, и STS, предположительно получающие входной сигнал не только от ипсилатеральной OFA, но и от других зон распределенной системы, могут участвовать в анализе как экспрессии, так и личности изображенного человека, обеспечивая обработку статических и динамических признаков его лица соответственно. Нисходящие влияния внимания и стоящей перед наблюдателем задачи в свою очередь способны модулировать активацию и интенсивность взаимодействия между областями. В отличие от классической модели, результаты новых исследований предполагают, что оба типа данных — и статические, и динамические — используются для более эффективного решения перцептивных задач относительно узнавания натурщика по его лицу и определения его эмоционального состояния.

Восприятие лица в статике и динамике: один механизм или разные?

В предыдущем разделе был приведен ряд данных в пользу взаимодействия механизмов узнавания лица и идентификации его экспрессии, полученных с использованием динамических стимулов. В связи с тем, что лицо в своем естественном движении является более экологически валидным объектом восприятия, чем статичная фотография [24], изучение лежащих в основе этого процесса мозговых механизмов представляется актуальной задачей, решению которой посвящено возрастающее число работ. В ряде исследований были сделаны попытки ответить на вопрос, обеспечивается ли восприятие экологически валидных динамических экспрессий особым механизмом, не сводимым к механизмам восприятия статичных лиц. Сопоставление мозговой активации в ответ на экспозицию статических и динамических лиц показывает, что последние действительно вызывают более стабильный и интенсивный ответ во всех ключевых зонах системы восприятия лица [30; 15]. При этом наибольшее увеличение активации наблюдалось в области pSTS, которая играет ключевую роль в восприятии биологического движения, но которую зачастую оказывается невозможным выявить у отдельного испытуемого при использовании в качестве стимульного материала статических изображений [4]. Вместе с тем, роль движения в зрительном анализе лица не ограничивается интеграцией зон, входящих в ядро распределенной мозговой системы. При восприятии динамических лиц усиливается

40

активация в парагиппокампальной извилине и миндалине, в затылочной и орбитофронтальной коре [15; 30; 51; 76; 60]. В анализ динамической информации вовлекаются зоны, которые практически не демонстрировали активации при восприятии статических изображений: область в верхней височной извилине более кпереди от pSTS, а также в нижней лобной извилине [30; 15]. Последнюю связывают не только с анализом лиц, но и с восприятием и имитацией действий других людей. Анализ функциональных связей показал, что восприятие реалистичных динамических экспрессий лица усиливает взаимосвязи между областями ранней зрительной обработки в затылочной коре и STS, а также между STS и миндалиной и нижней лобной извилиной [20], в полном соответствии с предположением о наличии обратных связей между этими областями [39]. Между pSTS и более передней частью STS, а также областями в лобной коре имеются и прочные анатомические связи [26; 77], что также подтверждает предположение о наличии особого пути переработки динамической информации о лице, ключевой областью которого является STS.

При восприятии эмоциональных экспрессий лица, которые по самой своей природе являются динамическими, движение также приводит к более широкой активации зон мозга. По сравнению со статическими лицами, динамическая экспрессия радости вызывает большую активацию в клиновидной и лингвальной извилинах, зоне V5, связанной с восприятием движения, и STS, в нижней височной (включая FFA) и медиальной фронтальной коре [16; 72]; экспрессия отвращения — в нижней лобной извилине, миндалине, FFA и STS, [72]; экспрессия гнева — в STS, V5 и в области, прилежащей к миндалине [16]. Различные особенности динамики экспрессий также можно дифференцировать по активации мозга: в случае усиления выражаемой эмоции страха по сравнению с ее ослаблением наблюдается изменение активации в левой FFA [55] и в миндалине [24], а при инверсии видеозаписей экспрессии во времени — в правой pSTS [55]. Активация в STS выше при экспозиции реалистичных видеозаписей лица натурщика по сравнению с динамическими стимулами, инвертированными в пространстве (поворот на 180°) [31] или со стимулами с перемешанным порядком кадров, а частота кадров, с которой демонстрируется видеозапись, коррелирует с активацией областей, связанных с восприятием как лица, так и движения [76]. Недавнее МЭГ-исследование восприятия динамических экспрессий радости и гнева, по сравнению с динамическими рандомизированными паттернами, позволило выявить не только структурные, но и временные характеристики процесса восприятия: в интервале 150—200 мс, содержащем специфический для лица компонент M170, возрастает активация в FFA и STS, тогда как на более поздних этапах переработки информации (250—400 мс от начала экспозиции лица) наблюдается как активация в FFA и STS, которая может быть связана с более поздними стадиями когнитивной переработки, так и специфическая активация в нижней лобной коре [58]. Анализ динамики связей между данными областями показал, что наиболее точно наблюдаемую активацию описывает модель, включающая прямые и обратные связи между зонами, организованные в двух направлениях: от зрительной коры через FFA и STS к нижней лобной коре и от зрительной коры через зону V5 и STS. Согласно выдвинутому авторами данного исследования предположению, после начальных этапов зрительной и когнитивной обработки информация об экспрессии лица может использоваться в виде моторной репрезентации для подготовки к дальнейшему действию. В целом, исследования динамических экспрессий говорят в пользу того, что мозговые механизмы, обеспечивающие восприятие движения лица (прежде всего STS), не сводятся к механизмам восприятия статических лиц, задействуют большее число областей мозга и участвуют в узнавании как лиц, так и экспрес-сий [7]. Представляется, что STS является ключевой зоной латерального пути анализа лицевого движения и участвует в интеграции информации о форме и движении динамических лицевых стимулов на достаточно ранней стадии переработки.

Восприятие лица в контексте: какие механизмы обеспечивают коммуникацию «лицом к лицу»?

Как уже отмечалось ранее, классические модели переработки информации о лице основываются преимущественно на исследованиях восприятия изображений статичного изолированного лица. Однако в реальной жизни за пределами лаборатории мы редко сталкиваемся с такими ситуациями. Напротив, мы наблюдаем и оцениваем лица, включенные в самый разнообразный контекст, который может оказывать существенное влияние на их восприятие [78]. Контекст может содержать как дополнительную информацию о действиях, жестах, намерениях и речи изображенного человека, так и сведения о ситуации, в которую он включен. Наконец, в качестве еще одного источника контекста, связанного с самим наблюдателем, можно рассматривать его установки, прошлый опыт и индивидуальные особенности. Полученные за последнее время данные о том, какие структуры мозга и их функциональные взаимодействия обеспечивают анализ лица, включенного в контекст, позволяют приблизиться к пониманию механизмов процесса взаимодействия «лицом к лицу» в повседневной жизни.

При восприятии эмоциональных экспрессий лица одним из контекстных признаков, увеличивающих точность оценки выраженных эмоций, служит направление взора натурщика. В частности, когда взгляд натурщика направлен вперед, динамическая экспрессия гнева средней интенсивности воспринимается как сильнее выраженная и более релевантная для наблюдателя, а активация в миндалине, FFA и медиальной префронтальной коре увеличивается, по сравнению с восприятием лица, взгляд которого направлен в сторону [47; 22]. В случае экспрессии страха, демонстрируемой на короткое время или обладающей низкой интенсивностью,

41

напротив, лицо с отведенным в сторону взором сильнее активирует данные области мозга, а эмоция воспринимается как более интенсивная и релевантная [3; 47]. Вместе с тем, имеются данные о том, что в анализе направления взора и валентности экспрессии лица участвуют различные участки миндалины, в связи с чем вопрос о взаимодействии механизмов остается открытым [22].

Еще один важный признак, по которому мы судим о намерениях собеседника и который используем для предвосхищения его дальнейших действий по отношению к нам, — его жесты, поза и экспрессия тела. В отличие от исследований лица, изучение экспрессий тела является относительно новым предметом для социальной и аффективной нейронауки [64]. Если два источника данных об экспрессии конгруэнтны, эффективность и скорость анализа эмоционального состояния коммуниканта существенно повышается, а ранняя интеграция информации отражается в электрической активности мозга, тогда как при рассогласованиях экспрессии лица и тела наблюдатель совершает больше ошибок в распознавании выражений лица [44]. Распределенные системы, связанные с анализом лица и тела, частично пересекаются (в частности, обе включают миндалину, верхнюю височную борозду и веретеновидную извилину [62; 49]), однако имеется и ряд специфических для восприятия тела областей. В частности, по сравнению с динамическими лицами, динамические изображения тела, выражающего состояния страха либо гнева, сильнее активируют экстастриарную область, связанную с восприятием тела человека (EBA), в затылочной коре, STS и область в височно-теменной связке (которая, согласно ряду исследований, включена в анализ социальных действий); миндалина сильнее активируется на изображения экспрессий лица, чем тела; веретеновидная извилина в целом демонстрирует одинаковую активацию как на лица, так и на тела [62], однако за их кодирование отвечают различные нейронные популяции [61]. Специализация областей в затылочной коре, включенных в перцептивный анализ лица (OFA) и тела (EBA), происходит на достаточно ранних стадиях распознавания изображений. С помощью ТМС-инактивации OFA либо EBA удалось избирательно разрушить восприятие лиц либо тел соответственно при воздействии через 100/110 мс после появления стимульного изображения, однако более раннее воздействие (через 40/50 мс) не приводило к такой избирательности [74]. С другой стороны, фМРТ-адаптация к изображениям всего тела человека выявила снижение активации в участках вере-теновидной извилины и экстрастриарной коры, которое не сводится к сумме эффектов, полученных при адаптации к изображению только лица или только тела, что говорит в пользу не только дифференциации, но и интеграции зрительной информации о теле и лице [59].

Жесты и действия также могут передавать информацию об эмоциональном состоянии человека, которая анализируется как дополнительный контекстный признак, согласованный либо не согласованный с выражением его лица [80]. Восприятие жестов активирует перцептивную и моторную системы, необходимые для распознавания действия, а также эмоциональную систему для анализа намерений и состояния собеседника. При восприятии эмоционального лица в контексте действия активируются области в STS и нижней лобной коре, связанные с анализом движения, подготовкой моторного ответа и предвосхищением действий натурщика [10].

Обобщая исследования контекстных эффектов, М. Визер и Т. Брош предложили ряд дополнений в классическую модель Хаксби, согласно которым различные виды контекста могут влиять на разные стадии анализа лицевой информации [78]. В областях, составляющих ядро распределенной системы, интегрируется информация о дополнительных признаках, извлекаемых из самого лица — направлении взора, динамики экспрессии, а также расовых признаках коммуниканта. Области, входящие в расширенную систему, а также внешние по отношению к лицевой системе зоны, с помощью обратной связи модулируют процессы в ядре системы. Так, внешний контекст предположительно влияет на восприятие лица посредством активации в эмоциональной системе мозга (в частности, в миндалине, островковой коре и стриатуме), которая благодаря системе прямых и обратных связей между миндалиной и зонами ядра лицевой системы усиливает взаимодействие восприятия экспрессий и аффективного контекста, тем самым обеспечивая формирование целостного перцептивного образа. Аналогичные влияния рассмотрены и для других типов контекста. Вероятно, они наблюдаются на всех стадиях процесса анализа лицевой информации, начиная с достаточно ранних, а интеграция сведений, получаемых в том числе и от разных модальностей, является автоматизированной [9; 74]. Данная распределенная система предположительно обеспечивает сложный процесс восприятия лиц в контексте ситуаций, встречающихся нам в повседневной жизни.

Заключение

В настоящем обзоре был рассмотрен ряд нейроимиджинговых данных, полученных за последнее время и позволяющих уточнить представления о мозговых механизмах восприятия лица человека. Применение новых методов исследования и анализа данных сделало возможным более детальное изучение строения и функционирования распределенной системы восприятия лица, которая была первоначально описана Брюс и Янгом [12], Хаксби и др. [33]. В частности, по результатам последних исследований, в рассматриваемой системе необходимо выделять особый путь анализа динамической информации о лице, который начинается в первичной зрительной коре и в значительной степени отделен от вентрального пути, проходящего через области, связанные с обработкой инвариантных характеристик лица. Динамическая информация может использоваться не только для распознавания изменчивых характеристик лица, как предполагалось ранее, но и для

42

узнавания человека по его характерной мимике, что обеспечивается функциональным взаимодействием различных механизмов. Вероятно, можно говорить о том, что наш мозг «настроен» на анализ движущихся, меняющихся лиц, включенных в контекст и сопровождаемых действиями, взглядом и жестами. Дальнейшие исследования, таким образом, должны быть направлены на более детальное изучение механизмов восприятия экологически валидного, «живого» лица в естественной ситуации коммуникации.

За пределами настоящего обзора остались многочисленные проводимые с помощью ЭЭГ и МЭГ исследования динамики функционирования системы лица, которые также вносят дополнительные уточнения в рабочую модель данного процесса и несомненно заслуживают отдельного рассмотрения. Мы также преимущественно опирались на работы, проведенные на здоровых взрослых респондентах (за исключением анализа случаев прозопагнозии). Однако особенности восприятия лица и его экспрессий также активно изучаются на выборках с различными нарушениями, такими как расстройства аутистического спектра, депрессивные расстройства, шизофрения и др. Мы не анализировали данные, полученные на приматах и представителях других биологических видов, в том числе путем прямой регистрации активности отдельных нейронов, а также на детских и подростковых выборках. Вместе с тем, рассмотренные в данном обзоре работы позволяют составить представление о механизмах восприятия лица и выявить основные тенденции дальнейших исследований.

Благодарности

Работа выполнена при поддержке Российского гуманитарного научного фонда (проект № 15-36-01281 «Структура восприятия динамических экспрессий лица»).

ЛИТЕРАТУРА

1. A case of prosopagnosia with some preserved covert remembrance of familiar faces / R. Bruyer [et al.] // Brain and cognition. 1983. Vol. 2. № 3. P. 257—284. doi: 10.1016/0278-2626(83)90014-3

2. Abnormal face identity coding in the middle fusiform gyrus of two brain-damaged prosopagnosic patients / J. Steeves [et al.] // Neuropsychologia. 2009. Vol. 47. № 12. P. 2584—2592. doi: 10.1016/j.neuropsychologia.2009.05.005

3. Amygdala responses to averted vs direct gaze fear vary as a function of presentation speed / R. B. Adams [et al.] // Social Cognitive and Affective Neuroscience. 2012. Vol. 7. № 5. P. 568—577. doi: 10.1093/scan/nsr038

4. Andrews T. J., Ewbank M. P. Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe // NeuroImage. 2004. Vol. 23. № 3. P. 905—913. doi: 10.1016/j.neuroimage.2004.07.060

5. Are faces special? A case of pure prosopagnosia / M. J. Riddoch [et al.] // Cognitive Neuropsychology. 2008. Vol. 25. № 1. P. 3—26. doi: 10.1080/02643290801920113

6. Barton J. J. S. Structure and function in acquired prosopagnosia: Lessons from a series of 10 patients with brain damage // Journal of Neuropsychology. 2008. Vol. 2. № 1. P. 197—225. doi: 10.1348/174866407X214172

7. Bate S., Bennetts R. The independence of expression and identity in face-processing: evidence from neuropsychological case studies // Frontiers in Psychology. 2015. Vol. 6. P. 1—7. doi: 10.3389/fpsyg.2015.00770

8. Bernstein M., Yovel G. Two neural pathways of face processing: A critical evaluation of current models // Neuroscience & Biobehavioral Reviews. 2015. Vol. 55. P. 536—546. doi: 10.1016/j.neubiorev.2015.06.010

9. Beyond the face: exploring rapid influences of context on face processing / B. de Gelder [et al.] // Progress in Brain Research. 2006. Vol. Part B. 155. P. 37—48. doi: 10.1016/S0079-6123(06)55003-4

10. Binding action and emotion in social understanding / F. Ferri [et al.] // PloS one. 2013. Vol. 8. № 1. P. e54091. doi: 10.1371/journal.pone.0054091

11. Bouvier S. E. Behavioral Deficits and Cortical Damage Loci in Cerebral Achromatopsia // Cerebral Cortex. 2005. Vol. 16. № 2. P. 183—191. doi: 10.1093/cercor/bhi096

12. Bruce V., Young A. Understanding face recognition // British Journal of Psychology. 1986. Vol. 77. № 3. P. 305—327. doi: 10.1111/j.2044-8295.1986.tb02199.x

13. Calder A. J., Young A. W. Understanding the recognition of facial identity and facial expression // Nature reviews. Neuroscience. 2005. Vol. 6. № 8. P. 641—651. doi: 10.1038/nrn1724

14. Covert face recognition relies on affective valence in congenital prosopagnosia / S. Bate [et al.] // Cognitive Neuropsychology. 2009. Vol. 26. № 4. P. 391—411. doi: 10.1080/02643290903175004

15. Differential selectivity for dynamic versus static information in face-selective cortical regions / D. Pitcher [et al.] // NeuroImage. 2011. Vol. 56. № 4. P. 2356—2363. doi: 10.1016/j.neuroimage.2011.03.067

16. Dissociable Neural Pathways Are Involved in the Recognition of Emotion in Static and Dynamic Facial Expressions / C. D. Kilts [et al.] // NeuroImage. 2003. Vol. 18. № 1. P. 156—168. doi: 10.1006/nimg.2002.1323

17. Dissociable roles of the human somatosensory and superior temporal cortices for processing social face signals / G. Pourtois [et al.] // Neuroscience. 2004. Vol. 20. № 12. P. 3507—3515. doi: 10.1111/j.1460-9568.2004.03794.x

18. Duchaine B., Germine L., Nakayama K. Family resemblance: Ten family members with prosopagnosia and within-class object agnosia // Cognitive Neuropsychology. 2007. Vol. 24. № 4. P. 419—430. doi: 10.1080/02643290701380491

Адрес страницы: https://psychlib.ru/mgppu/periodica/SZP042016/SZP-0361.htm